Forcing Axioms, Finite Conditions and Some More
نویسنده
چکیده
We survey some classical and some recent results in the theory of forcing axioms, aiming to present recent breakthroughs and interest the reader in further developing the theory. The article is written for an audience of logicians and mathematicians not necessarily familiar with set theory.
منابع مشابه
Forcing Axioms and Cardinal Arithmetic
We survey some recent results on the impact of strong forcing axioms such as the Proper Forcing Axiom PFA and Martin’s Maximum MM on cardinal arithmetic. We concentrate on three combinatorial principles which follow from strong forcing axioms: stationary set reflection, Moore’s Mapping Reflection Principle MRP and the P-ideal dichotomy introduced by Abraham and Todorčević which play the key rol...
متن کاملNotes to “The Resurrection Axioms”
I will discuss a new class of forcing axioms, the Resurrection Axioms (RA), and the Weak Resurrection Axioms (wRA). While Cohen’s method of forcing has been designed to change truths about the set-theoretic universe you live in, the point of Resurrection is that some truths that have been changed by forcing can in fact be resurrected, i.e. forced to hold again. In this talk, I will illustrate h...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملForcing with adequate sets of models as side conditions
We present a general framework for forcing on ω2 with finite conditions using countable models as side conditions. This framework is based on a method of comparing countable models as being membership related up to a large initial segment. We give several examples of this type of forcing, including adding a function on ω2, adding a nonreflecting stationary subset of ω2 ∩ cof(ω), and adding an ω...
متن کاملForcing indestructibility of set-theoretic axioms
Various theorems for the preservation of set-theoretic axioms under forcing are proved, regarding both forcing axioms and axioms true in the Levy-Collapse. These show in particular that certain applications of forcing axioms require to add generic countable sequences high up in the set-theoretic hierarchy even before collapsing everything down to א1. Later we give applications, among them the c...
متن کامل